US009135054B1

a2 United States Patent

Misra et al.

US 9,135,054 B1
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(1)

(52)

(58)

METHOD AND APPARATUS TO MIGRATE
STACKS FOR THREAD EXECUTION
Inventors: Ronnie Misra, Sunnyvale, CA (US);
Joshua Shaffer, San Jose, CA (US)

Assignee: Apple Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1749 days.

Appl. No.: 12/174,603

Filed: Jul. 16, 2008

Int. CI.

GOGF 9/40 (2006.01)

GOG6F 9/46 (2006.01)

U.S. CL

CPC e, GOG6F 9/461 (2013.01)
Field of Classification Search

None

See application file for complete search history.

START

(56) References Cited

U.S. PATENT DOCUMENTS

5,845,129 A * 12/1998 Wendorfetal. ... 710/200
6,910,213 B1* 6/2005 Hironoetal. 718/108
2003/0163675 Al* 82003 Bennettetal. 712/228
2006/0026312 Al* 2/2006 Chauvelcccccoceeine 710/23
2006/0136930 Al* 6/2006 Kaleretal. 718/105

FOREIGN PATENT DOCUMENTS

JP 2006139495 A * 6/2006

* cited by examiner

Primary Examiner — William B Partridge
(74) Attorney, Agent, or Firm — Downey Brand LLP

(57) ABSTRACT

A method and an apparatus that generate a request from a first
thread of a process using a first stack for a second thread of the
process to execute a code are described. Based on the request,
the second thread executes the code using the first stack.
Subsequent to the execution of the code, the first thread
receives a return of the request using the first stack.

18 Claims, 7 Drawing Sheets

300

GENERATE A REQUEST FROM A SOURCE THREAD USING A SOURCE
STACK FOR A TARGET THREAD TQ PERFORM A TASK INCLUDING
EXECUTING A CODE

A

WAIT FOR A RETURN FROM THE EXECUTION OF THE CODE

h 4

SCHEDULE THE TARGET THREAD ASSOCIATED WITH A TARGET
STACK ACCORDING TO THE REQUEST

h 4

PERFORM THE TASK BASED ON THE REQUEST FROM THE TARGET
THREAD ASSOCIATED WITH THE TARGET STACK

h 4

ASSIGN THE SOURCE STACK TO THE TARGET THREAD TO EXECUTE
THE CODE

4

EXECUTE THE CODE FROM THE TARGET THREAD USING THE
SQURCE STACK

'

DETECT THE RETURN FROM THE EXECUTION OF THE CODE FROM
THE SOURCE THREAD USING THE SOURCE STACK

) 4

C mo)

U.S. Patent

INFO .

Sep. 15, 2015 Sheet 1 of 7 US 9,135,054 B1
100
125 121 / 123
/ PROCESS - Y ~ N DATA PROCESSING
SOURCE SYSTEM
THREAD 133 TARGET
THREAD, 127 145
/ 101
SOURCE_TLS TARGET TLS / I
135 - 1129 | REQUEST QUEUE
N ...\l /= TARGET ™
THREAD 1103
SOURCE _STAC || / REQUEST
K / TARGET
/ TARGET STACK THREAD ID 1105 |—
;ﬁ/ . SOURCE
N\ : /) THREAD ID 107
T

THREAD
{ CONTEXT .~ 141 _ A2 Y,
STACK POINTER STACK NG |,109
N LOCAL MODULE
STORAGE 113
N POINTER 143 THREAD
' MANAGEMENT
/ 147 MODULE ’(1 15
[
DEBUG a THREAD SCHEDULE "™) 117
MODULE e
SOURCE THREAD
Ve 149 D 119
USER INTERFACE (TARGET THREAD)
MODULE D
\ J

FIG. 1

U.S. Patent Sep. 15, 2015 Sheet 2 of 7 US 9,135,054 B1

100

125 121
123
e / yd

4 / / N
PROCESS

/

/

\
-]
%
Q
e
|

SOURCE THREAD THREAD

-127

\
{ TARGET TLS }
/ 129

| e

l'/"
V/
TARGET STACK
/

SOURCE_TLS

SOURCE_STACK

N — W—"

*
. _)
K \“\\ /
N\ (139
4 THREAD
“\. .CONTEXT _— 14
< STACK POINTER
| 143
LOCAL STORAGE
POINTER
. /

FIG. 2

U.S. Patent

Sep. 15, 2015 Sheet 3 of 7

=

GENERATE A REQUEST FROM A SOURCE THREAD USING A SOURCE
STACK FOR A TARGET THREAD TO PERFORM A TASK INCLUDING
EXECUTING A CODE

%

Y

WAIT FOR A RETURN FROM THE EXECUTION OF THE CODE

l

SCHEDULE THE TARGET THREAD ASSOCIATED WITH A TARGET
STACK ACCORDING TO THE REQUEST

NN

'

PERFORM THE TASK BASED ON THE REQUEST FROM THE TARGET
THREAD ASSOCIATED WITH THE TARGET STACK

'

ASSIGN THE SOURCE STACK TO THE TARGET THREAD TO EXECUTE
THE CODE

!

EXECUTE THE CODE FROM THE TARGET THREAD USING THE
SOURCE STACK

'

DETECT THE RETURN FROM THE EXECUTION OF THE CODE FROM
THE SOURCE THREAD USING THE SOURCE STACK

NN N

A A

Cao)

FIG. 3

US 9,135,054 B1

301

303

305

307

313

U.S. Patent Sep. 15, 2015 Sheet 4 of 7 US 9,135,054 B1

(APPLICATION PROGRAM INTERFACE) TO EXECUTE A CODEIN A
PROCESS

SCHEDULE A MAIN THREAD OF THE PROCESS ACCORDING TO THE
API

l 405

MIGRATE A STACK ASSOCIATED WITH THE THREAD TO THE MAIN
THREAD

'

407
EXECUTE THE CODE FROM THE MAIN THREAD USING THE STACK /

401
GENERATE A REQUEST FROM A THREAD IN A PROCESS VIA AN API /

ASSOCIATED WITH THE THREAD

!

RECEIVE A RETURN FROM THE API FROM THE THREAD SUBSEQUENT
TO THE EXECUTION OF THE CODE

409

FIG. 4

U.S. Patent Sep. 15, 2015 Sheet 5 of 7

START

US 9,135,054 B1

n
o

EXECUTE A FIRST CODE FROM A FIRST
THREAD ASSOCIATED WITH A FIRST STACK
HAVING A FIRST STACK STATE

- 501
»

'

MIGRATE THE FIRST STACK TO A SECOND
THREAD ASSOCIATED WITH A SECOND
STACK

503

l

EXECUTE A SECOND CODE FROM THE
SECOND THREAD TO PUSH A SECOND
STACK STATE TO THE FIRST STACK

-

l

_— 507

RECEIVE A DEBUG REQUEST FOR THE
SECOND THREAD

l

IN RESPONSE TO THE DEBUG REQUEST,
PRESENT A STACK TRACE FOR THE SECOND
THREAD INCLUDING THE FIRST STACK
STATE AND THE SECOND STACK STATE

509

i\

END

/
7

\

~—

FIG. 5

U.S. Patent

603 —

605 -

607 —

Sep. 15, 2015 Sheet 6 of 7
600
-
e
»
Afun1 ()
{
int x, y; - 611
“Aperform_main(fun2, x, y);
I
L5un2(int a, int b)
{
¥
fun2 -
perform_main »
fun1

FIG. 6

601

US 9,135,054 B1

U.S. Patent Sep. 15, 2015 Sheet 7 of 7 US 9,135,054 B1
700
704
CACHE
, 703 707 705 706
NONVOLATILE
VOLATILE MEMORY
MICROPROCESSOR ROM RAM (e.2., HARD DRIVE OR
FLASH MEMORY)
BUS(ES)
702
709
DISPLAY 1/0
CONTROLLER CONTROLLER(S)
& DISPLAY
DEVICE

\ 708

1/0
DEVICE(S)
(e.g., MOUSE, OR
KEYBOARD, OR
MODEM, OR
NETWORK
INTERFACE, OR
PRINTER)

FIG. 7

710

US 9,135,054 B1

1
METHOD AND APPARATUS TO MIGRATE
STACKS FOR THREAD EXECUTION

FIELD OF INVENTION

The present invention relates generally to multi-thread sys-
tems. More particularly, this invention relates to migrating
thread stacks for thread context switching.

BACKGROUND

Advancement of computing systems has allowed a soft-
ware program to run as one or more execution entities, such as
threads, processes, and so forth. Usually, such a software
program may cause thread context switching running from
one thread to another. As a result, resources are allocated
dynamically to coordinate activities among execution enti-
ties. For example, a synchronization mechanism is activated
when more than one threads in a process concurrently request
a single-thread service which allows only one thread to access
at a time. Usually, synchronization mechanism requires allo-
cation of synchronization resources such as events, mutexes,
or locks, etc. Therefore, available resources for execution
entities are reduced and the performance of a computing
system can be compromised when synchronizing threads.

Although it may be possible to dedicate a single thread to
perform a single thread task, such a thread is likely to idle
most of the time wasting valuable computing resources when
no request is present for its service. Additionally, a thread has
to communicate with the single thread to obtain its service.
Often times, communications between threads may incur
message passing, queuing, and/or notifications, etc. which,
again, may drain away resources from computing systems.

Therefore, system performance can be improved if mul-
tiple threads are synchronized leveraging existing mecha-
nisms already established, such as thread context switching in
a multi-threading system, without requiring allocating addi-
tionally resources.

SUMMARY OF THE DESCRIPTION

An embodiment of the present invention includes methods
and apparatuses that generating a request from a first thread of
aprocess using a first stack for a second thread of the process
to execute a code. Based on the request, the second thread
executes the code using the first stack. Subsequent to the
execution of the code, the first thread receives a return of the
request using the first stack.

In an alternative embodiment, a first thread in a process
executes a first code to update a stack associated with a first
stack trace. A second thread in the same process executes a
second code to update the stack. The updated stack is associ-
ated with a second stack trace on top of the first stack trace. A
stack trace is displayed to provide debug information for the
second thread. The displayed stack traced includes both the
first stack trace and the second stack trace.

In an alternative embodiment, a first thread in a process
generates a first request using a first stack for a main thread of
the process to execute a code. A second thread of the same
process generates a second request using a second stack for
the main thread to execute the code. Separately, the main
thread executes the code using the first stack according to the
first request and executes the code using the second stack
according to the second request.

Other features of the present invention will be apparent
from the accompanying drawings and from the detailed
description that follows.

10

25

30

40

45

2
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

FIG. 1 is a block diagram illustrating one embodiment of a
system for stack migration;

FIG. 2 is a block diagram illustrating one embodiment of a
stack which has been migrated;

FIG. 3 is a flow diagram illustrating one embodiment of a
process for migrating a stack;

FIG. 4 is a flow diagram illustrating an embodiment of
stack migration via APl (Application Programming Inter-
face) calls;

FIG. 5 is a flow diagram illustrating one embodiment of
presenting a stack trace for a migrated stack;

FIG. 6 is a block diagram illustrating one example of codes
executed via separate threads to migrate a stack;

FIG. 7 illustrates one example of a typical data processing
system such as a computer system, which may be used in
conjunction with the embodiments described herein.

DETAILED DESCRIPTION

A method and an apparatus for stack migration are
described herein. In the following description, numerous spe-
cific details are set forth to provide thorough explanation of
embodiments of the present invention. It will be apparent,
however, to one skilled in the art, that embodiments of the
present invention may be practiced without these specific
details. In other instances, well-known components, struc-
tures, and techniques have not been shown in detail in order
not to obscure the understanding of this description.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification do not necessarily all refer to
the same embodiment.

The processes depicted in the figures that follow, are per-
formed by processing logic that comprises hardware (e.g.,
circuitry, dedicated logic, etc.), software (such as is runon a
general-purpose computer system or a dedicated machine), or
a combination of both. Although the processes are described
below in terms of some sequential operations, it should be
appreciated that some of the operations described may be
performed in different order. Moreover, some operations may
be performed in parallel rather than sequentially.

In one embodiment, stack migration may be designed to
provide a method and an apparatus that migrate a stack from
one thread to another thread. A single existing thread, such as
amain thread in a process, may execute a code using migrated
stacks from multiple threads of the same process in a syn-
chronous manner. In one embodiment, a thread in a process
may call an API (application programming interface) that
causes a stack migration associated with a main thread to
execute a code as part of parameters passed to the API. A
thread may execute a code using a stack migrated from
another thread waiting for a return from the execution of the
code. In one embodiment, stack migration may cause a debug
system to display a single stack trace associated with execu-
tions by more than one threads.

FIG. 1 is a block diagram illustrating one embodiment of a
system for stack migration. In one embodiment, system 100
may be a computer operating environment including a run-
ning process 121 having more than one threads such as

US 9,135,054 B1

3

Source thread 125 and Target thread 123. A thread may
include a stack for executing instructions associated with the
thread, such as Source_stack 135 of Source thread 125. Addi-
tionally, a thread may own a thread local storage (TLS) which
may be updated only by the owning thread, such as
Source_TLS 133 of Source thread 125. In one embodiment,
system 100 may include a thread context 139 for running a
thread. A thread context 139 may include a stack pointer 141
and alocal storage pointer 143 pointing respectively to a stack
and a thread local storage of a running thread, such as
Target_stack 129 and Target_TLS 127 of Target thread 123.
When switching from one thread to another during runtime,
system 100 may update a stack pointer and a local storage
pointer in a thread context to point to the corresponding stack
and local storage of the thread switched to. Additionally,
system 100 may include a debug module 147 which may
receive user request from User interface module 149 to inter-
cept operations of system 100 and presenting a state of system
100, such as a stack trace from Source_stack 135 or
Target_stack 129 via User interface module 149.

In one embodiment, system 100 may include a thread
request to schedule a target thread to perform a task. A run-
ning thread may generate a thread request for a target thread
to perform a task. In one embodiment, a thread request, such
as Target thread request 101, may include an identifier for a
target thread, such as Target thread ID 103 to identify Target
thread 123, an identifier for a running thread which generates
the request, such as Source thread ID 105 to identify Source
thread 125, and information on the intended task, such as
Request task info 107, which might include a pointer to a
function code. In one embodiment, a thread request may be
stored in a request queue, such as Request queue 145, to be
processed in an order according to a thread management
module 113. A thread management module 113 may update a
schedule for running threads, such as Thread schedule 115,
based on a request queue 145. For example, Thread schedule
115 may include Target thread id 119 which identifies Target
thread 123 as currently running thread and Source thread id
117 which identifies Source thread 125 as a thread scheduled
to run subsequently.

In one embodiment, system 100 may include a stack jump-
ing module 109 which performs stack migration between a
source thread and a target thread identified in a thread request.
A stack jumping module 109 may migrate a stack from a
source thread, such as Source_stack 135, to a target thread,
such as Target thread 123, according to a thread request, such
as Target thread request 101. In one embodiment, a stack
jumping module 109 may update a thread context 139 for
migrating stacks. For example, when running Target thread
123, a stack jumping module 109 may update a thread context
139 including a local storage pointer 143 and a stack pointer
141 pointing respectively to Target_stack 129 and
Target_TLS 127 of Target thread 123. A running thread may
be the one selected to run from among more than one threads
already scheduled. In one embodiment, no more than one
running thread may be associated with a single processor at a
time. A stack jumping module 109 may perform a request
task, such as according to Request task info 107 of Target
thread request 101, subsequent to updating a thread context
139 for stack migration.

FIG. 2 is a block diagram illustrating one embodiment of a
stack which has been migrated. In one embodiment,
Source_stack 135 of Source thread 125 is migrated to Target
thread 123 via a stack jumping module 109 of FIG. 1 which
updates a stack pointer 141 of a thread context 139 from
pointing to Target stack 129 of Target thread 123 to
Source_stack 135 of Source thread 125. A request for migrat-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

ing Source_stack 135 may be generated when running Source
thread 125. In one embodiment, a stack jumping module 109
may perform a requested task, such as based on Request task
info 107 of FIG. 1, under Target thread 123 using a migrated
stack, such as Source_stack 135 of Source thread 125,
according to an updated thread context 139.

FIG. 3 is a flow diagram illustrating one embodiment of a
process for migrating a stack. Exemplary process 300 may be
performed by a processing logic that may comprise hardware
(circuitry, dedicated logic, etc.), software (such asisrunon a
dedicated machine), or a combination of both. For example,
process 300 may be performed by some components of sys-
tem 100 of FIG. 1. In one embodiment, the processing logic of
process 300 may run a source thread to generate a request for
atarget thread to perform a task including executing a code at
block 301. A source thread, such as Source thread 125 of FIG.
1, may be associated with a source stack, such as Source_s-
tack 135 of FIG. 1. The processing logic of process 300 may
use the associated source stack to run the source thread. In one
embodiment, a stack pointer in a thread context, such as Stack
pointer 141 of Thread context 139 of FIG. 1, may point to the
source stack used by the processing logic of process 300. A
request may be a data structure, such as Target thread request
101 of FIG. 1, including an identifier for a target thread, such
as Target thread ID 103, and an identifier for the source thread
from which the request is generated, such as Source thread ID
105 of FIG. 1. Additionally, a request may include a task to be
performed by a requested target thread, such as included in
Request task info 107 of FIG. 1. A task may include a pointer
to an executable code. The processing logic of process 300
may append a generated request to a queue, such as Request
queue 145 of FIG. 1, to be processed in order with other
thread requests.

Ifthe target thread is active performing a current task when
a thread request for the target thread is generated, in one
embodiment, the processing logic of process 300 may not run
the target thread for the request before the current task is
completed. A thread may be active when scheduled to run in
a thread schedule, such as Thread schedule 115 of FIG. 1. At
block 303, the processing logic of process 300 running a
source thread may wait for a return from an execution of a
code by the requested target thread. In one embodiment, the
processing logic of process 300 may detect whether a return
from an execution of a code is available via a storage location.
In another embodiment, the processing logic of process 300
may depend on a hardware interrupt which indicates to a
waiting source thread that a return an execution of a code by
a requested target thread is available.

At block 305, according to one embodiment, the process-
ing logic of process 300 may schedule a target thread identi-
fied according to a request, such as, for example, based on a
Target thread ID 103 in Target thread request 101 of FIG. 1.
An identified target thread may be associated with a target
stack, such as Target_stack 129 associated with Target thread
123 of FIG. 1. The processing logic of process 300 may
update a schedule, such as Thread schedule 115 of FIG. 1, to
schedule an identified target thread. In one embodiment,
when an identified target thread according to a request is
active in a schedule, a corresponding source thread, such as
Source thread ID 105 of F1G. 1, may also be active waiting for
a return in the schedule. At block 307, the processing logic of
process 300 may perform a task specified in a thread request
from a target thread using a target stack associated with the
target thread. A stack pointer of a thread context for the
processing logic of process 300, such as Stack pointer 141 in
Thread context 139 of FIG. 1, may point to the associated
target stack used by the target thread. The processing logic of

US 9,135,054 B1

5

process 300 may perform a task at block 307 according to a
schedule established for the target thread at block 305.

Subsequently, at block 309, the processing logic of process
300 may assign a source stack associated with a source thread
to the target thread for executing a code. Thus, the source
stack may be migrated to replace the target stack associated
with the target thread before executing the code. A thread
request, such as Target thread request 101 of FIG. 1, may
identify both the source thread and the target thread. In one
embodiment, the processing logic of process 300 may update
a stack pointer in a thread context from a pointer pointing to
a target stack to a pointer pointing to a source stack for stack
migration. At block 311, the processing logic of process 300
may execute a code from the target thread using the source
stack. During the execution of the code, there may be no
updates on the target stack. In one embodiment, a thread
request identifying a target thread may include a pointer to the
code executed, such as in Request task info 107 of FIG. 1.
When the execution of the code from the target thread is
completed, a return may be indicated by an update in a storage
location or by generating a hardware interrupt for the source
thread. Atblock 313, in one embodiment, the processing logic
of process 300 may detect a return from the execution of the
code when running the source thread using the source stack.
In one embodiment, the processing logic of process 300 may
run the source thread using the source stack to determine if the
execution of the code is complete. A schedule, such as Thread
schedule 115 of FIG. 1, may include identifiers for both the
source thread and the target thread to indicate that both
threads are currently active waiting to be selected for running
as scheduled.

FIG. 4 is a flow diagram illustrating an embodiment of
stack migration via API calls. Exemplary process 400 may be
performed by a processing logic that may comprise hardware
(circuitry, dedicated logic, etc.), software (such asisrunon a
dedicated machine), or a combination of both. For example,
process 400 may be performed by some components of sys-
tem 100 of FIG. 1. The processing logic of process 400 may
generate a request from a thread to execute a code via an API
(Application Programming Interface) at block 401. In one
embodiment, input parameters of an API may be associated
with codes to be executed when the API is called. A thread
may block at a call to the API waiting for a return. In one
embodiment, as a result of calling an API, a request may be
generated to be placed in a queue for processing, such as
Request queue 145 of FIG. 1. At block 403, the processing
logic of process 400 may schedule a main thread of a process
associated with a calling thread to perform tasks according to
an API. A process may be associated with multiple threads
including a single main thread. In one embodiment, the pro-
cessing logic of process 400 may identify a main thread of a
process associated with the thread calling the API. The pro-
cessing logic of process 400 may update a thread schedule,
such as Thread schedule 115 of FIG. 1, according to a kernel
based on the generated request at block 401.

According to one embodiment, the processing logic of
process 400 may migrate a stack associated with a thread
calling the API to the scheduled main thread at block 405. A
main thread may be associated with a main stack separate
from the migrated stack. Prior to migrating a stack, the pro-
cessing logic of process 400 may perform operations accord-
ing to the API from the main thread using a main stack
associated with the main thread. In one embodiment, the
processing logic of process 400 may switch a thread context
from the thread calling the API at block 401 to the main thread
as scheduled at block 403. During thread context switch, the
processing logic of process 400 may update a local storage

25

30

35

40

45

55

6

pointer, such as Local storage pointer 143 of FIG. 1, in a
thread context, such as Thread context 139 of FIG. 1, to point
to a local storage associated with a main thread and update a
stack pointer, such as Stack pointer 141 of FIG. 1, of a thread
context to point to a main stack associated with the main
thread. To migrate a stack to a main thread, the processing
logic of process 400 may update a stack pointer of a current
thread context to point to the stack. At block 407, in one
embodiment, the processing logic of process 400 may
execute a code via an API from the main thread using the stack
migrated from the thread calling the API. While the code is
being executed from a main thread, a thread calling the API
may be scheduled in a thread schedule. The processing logic
of'process 400 may perform a thread context switch to run the
thread calling an API to determine if a return from the API is
available. In one embodiment, subsequent to completing the
execution of the code at block 409, the processing logic of
process 400 may perform a thread context switch to run a
thread calling an API to receive a return from the API.

FIG. 5 is a flow diagram illustrating one embodiment of
presenting a stack trace for a migrated stack. Exemplary
process 500 may be performed by a processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), software
(such as is run on a dedicated machine), or a combination of
both. For example, process 400 may be performed by some
components of system 100 of FIG. 1. At block 501, the
processing logic of process 500 may execute a first code from
a first thread associated with a first stack, such as Source_s-
tack 135 associated with Source thread 125 of FIG. 1. The
first stack may have a first stack state. A stack may include a
stack state associated with a set of values, e.g. a stack trace,
currently pushed (stored) in the stack. In one embodiment, the
processing logic of process 500 may include a stack pointer in
athread context, such as Stack pointer 141 of Thread context
139 of FIG. 1, pointing to the first stack of the first thread to
execute the first code.

At block 503, the processing logic of process 500 may
migrate the first stack of the first thread to a second thread
associated with a second stack. Both the first thread and the
second thread may belong to one single process. To migrate
the first stack, in one embodiment, the processing logic of
process 500 may update, from a second thread, such as Target
thread 123 of FIG. 1, a stack pointer in a thread context
pointing to the second stack, such as Stack pointer 141 point-
ing to Target_stack 129 of FIG. 1, to point to the first stack
associated with the first thread, such as Source_stack 135 of
Source thread 125 in FIG. 1. Subsequently at block 505, in
one embodiment, the processing logic of process 500 may
execute a second code from the second thread to push a
second stack state to the first stack on top of the first stack state
of the first stack. The second stack state may be generated
according to the execution of the second code from the second
thread.

In one embodiment, at block 507, the processing logic of
process 500 may receive a debug request, such as from Debug
module 147 of FIG. 1, according to a debug command from a
user. The processing logic of process 500 may perform debug
operations such as inspecting debug information including a
stack state for a thread. At block 509, in one embodiment, the
processing logic of process 500 may retrieve a current stack
state from the second thread to present a stack trace in
response to the debug request. The processing logic of pro-
cess 500 may present a stack trace via a user interface, such as
User interface module 149 of FIG. 1, to a user based on the
retrieved stack state of the second thread, including both the
first stack state and the second stack state. In one embodi-
ment, the processing logic of process 500 may present a

US 9,135,054 B1

7

separate stack trace for the first thread including also both the
first stack state and the second stack state.

FIG. 6 is a block diagram illustrating one example of codes
executed via separate threads to migrate a stack. A thread,
such as Source thread 125 of FIG. 1, may perform operations
for code block 601 including calling a function funcl 603.
The function funl 601 may call a single-thread function fun2
607 executable by one thread at a time. The function fun2 607
may be performed in a synchronized manner among multiple
threads by calling an API perform_main 605 with parameters
including pointers to the function fun2 611. Execution of the
function fun2 may be performed by a separate thread from the
thread calling the API perform_main 605. In one embodi-
ment, during a debug session, while a separate thread execut-
ing a single-thread function fun2 607 via the API
perform_main 605, a stack trace 609 for the separate thread
may be displayed including function fun2, API
perform_main and function funl called by different threads.

FIG. 7 shows one example of a data processing system such
as a computer system, which may be used with one embodi-
ment the present invention. For example, the system 700 may
be implemented as a part of the system shown in FIG. 1. Note
that while FIG. 7 illustrates various components of a com-
puter system, it is not intended to represent any particular
architecture or manner of interconnecting the components as
such details are not germane to the present invention. It will
also be appreciated that network computers and other data
processing systems which have fewer components or perhaps
more components may also be used with the present inven-
tion.

As shown in FIG. 7, the computer system 700, which is a
form of a data processing system, includes a bus 702 which is
coupled to a microprocessor(s) 703 and a ROM (Read Only
Memory) 707 and volatile RAM 705 and a non-volatile
memory 706. The microprocessor 703 may retrieve the
instructions from the memories 707, 705, 706 and execute the
instructions to perform operations described above. The bus
702 interconnects these various components together and
also interconnects these components 703, 707, 705, and 706
to a display controller and display device 708 and to periph-
eral devices such as input/output (I/O) devices 710 which
may be mice, keyboards, modems, network interfaces, print-
ers and other devices which are well known in the art. Typi-
cally, the input/output devices 710 are coupled to the system
through input/output controllers 709. The volatile RAM
(Random Access Memory) 705 is typically implemented as
dynamic RAM (DRAM) which requires power continually in
order to refresh or maintain the data in the memory.

The mass storage 706 is typically a magnetic hard drive or
amagnetic optical drive or an optical drive ora DVD RAM or
a flash memory or other types of memory systems which
maintain data (e.g. large amounts of data) even after power is
removed from the system. Typically, the mass storage 706
will also be a random access memory although this is not
required. While FIG. 7 shows that the mass storage 706 is a
local device coupled directly to the rest of the components in
the data processing system, it will be appreciated that the
present invention may utilize a non-volatile memory which is
remote from the system, such as a network storage device
which is coupled to the data processing system through a
network interface such as a modem or Ethernet interface or
wireless networking interface. The bus 702 may include one
or more buses connected to each other through various
bridges, controllers and/or adapters as is well known in the
art.

Portions of what was described above may be implemented
with logic circuitry such as a dedicated logic circuit or with a

10

15

20

25

30

35

40

45

50

55

60

65

8

microcontroller or other form of processing core that executes
program code instructions. Thus processes taught by the dis-
cussion above may be performed with program code such as
machine-executable instructions that cause a machine that
executes these instructions to perform certain functions. In
this context, a “machine” may be a machine that converts
intermediate form (or “abstract™) instructions into processor
specific instructions (e.g., an abstract execution environment
such as a “virtual machine” (e.g., a JAVA™ Virtual Machine),
an interpreter, a Common Language Runtime, a high-level
language virtual machine, etc.), and/or, electronic circuitry
disposed on a semiconductor chip (e.g., “logic circuitry”
implemented with transistors) designed to execute instruc-
tions such as a general-purpose processor and/or a special-
purpose processor. Processes taught by the discussion above
may also be performed by (in the alternative to a machine or
in combination with a machine) electronic circuitry designed
to perform the processes (or a portion thereof) without the
execution of program code.

An article of manufacture may be used to store program
code. An article of manufacture that stores program code may
be embodied as, but is not limited to, one or more memories
(e.g., one or more flash memories, random access memories
(static, dynamic or other)), optical disks, CD-ROMs (Com-
pact Disc Read-Only Memory), DVD (Digital Versatile Disc)
ROMs, EPROMs (Erasable Programmable Read Only
Memory), EEPROMs (Electrically Erasable Programmable
Read-Only Memory), magnetic or optical cards or other type
of machine-readable media suitable for storing electronic
instructions. Program code may also be downloaded from a
remote computer (e.g., a server) to a requesting computer
(e.g., aclient) by way of data signals embodied in a propaga-
tion medium (e.g., via a communication link (e.g., a network
connection)).

The preceding detailed descriptions are presented in terms
of algorithms and symbolic representations of operations on
data bits within a computer memory. These algorithmic
descriptions and representations are the tools used by those
skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art. An
algorithm is here, and generally, conceived to be a self-con-
sistent sequence of operations leading to a desired result. The
operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be kept in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to an apparatus for per-
forming the operations described herein. This apparatus may

US 9,135,054 B1

9

be specially constructed for the required purpose, or it may
comprise a general-purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs),
RAMs, EPROMs, EEPROMs, magnetic or optical cards, or
any type of media suitable for storing electronic instructions,
and each coupled to a computer system bus.

The processes and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general-purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to per-
form the operations described. The required structure for a
variety of these systems will be evident from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.

The foregoing discussion merely describes some exem-
plary embodiments of the present invention. One skilled in
the art will readily recognize from such discussion, the
accompanying drawings and the claims that various modifi-
cations can be made without departing from the spirit and
scope of the invention.

What is claimed is:

1. A computer-implemented method, comprising:

generating a request from a first thread of a process for a

second thread of the process to perform a task including

executing a code, wherein:

the first thread is associated with a first stack,

the second thread is associated with a second stack sepa-
rate from the first stack,

the process includes a thread context that specifies
which particular stack is used by an executing thread,

the thread context includes a stack pointer that refer-
ences the particular stack being used by the executing
thread, and

the stack pointer references the first stack indicating that
the first stack is used by the first thread to generate the
request; and

in response to the request:

performing the task from the second thread using the
second stack, wherein the stack pointer is updated to
reference the second stack indicating that the second
stack is used by the second thread to perform the task,

migrating the first stack to the second thread for execut-
ing the code associated with the task, wherein the first
stack is migrated to replace the second stack to
execute the code,

updating the thread context to indicate that the first stack
is migrated to the second thread, wherein updating the
thread context comprises updating the stack pointer
from referencing the second stack to referencing the
first stack indicating that the first stack is used by the
second thread to execute the code,

executing the code from the second thread using the first
stack associated with the first thread, and

receiving a return of the request from the first thread
after executing the code, wherein the thread context
specifies that the first stack is used by the first thread
to receive the return of the request.

2. The method of claim 1, wherein the first thread waits for
the return using the first stack after the request is generated.

10

15

20

25

30

35

40

45

50

55

60

65

10

3. The method of claim 1, wherein the second thread is a
single main thread of the process, the second stack is associ-
ated with a stack state, and the stack state does not change
during execution of the code.

4. The method of claim 1, further comprising:

determining whether the second thread is in an active state

when the request is generated, wherein the task is per-
formed from the second thread when the second thread
is not in the active state.

5. The method of claim 1, wherein receiving the return of
the request comprises:

determining whether the return of the request is available

from the first thread.

6. The method of claim 1, wherein the thread context
includes a thread local storage pointer, the first thread
includes a first local storage, the second thread includes a
second local storage, and the method further comprises:

updating the thread local storage pointer to reference the

second local storage; and

updating, after executing the code, the thread local storage

pointer to reference the first local storage.

7. A non-transitory machine-readable storage medium
configured to store instructions that, when executed by a
machine, cause the machine to carry out steps that include:

generating a request from a first thread of a process for a

second thread of the process to perform a task including

executing a code, wherein:

the first thread is associated with a first stack,

the second thread is associated with a second stack sepa-
rate from the first stack,

the process includes a thread context that specifies
which particular stack is used by an executing thread,

the thread context includes a stack pointer that refer-
ences the particular stack being used by the executing
thread, and

the stack pointer references the first stack indicating that
the first stack is used by the first thread to generate the
request; and

in response to the request:

performing the task from the second thread using the
second stack, wherein the stack pointer is updated to
reference the second stack indicating that the second
stack is used by the second thread to perform the task,

migrating the first stack to the second thread for execut-
ing the code associated with the task, wherein the first
stack is migrated to replace the second stack to
execute the code,

updating the thread context to indicate that the first stack
is migrated to the second thread, wherein updating the
thread context comprises updating the stack pointer
from referencing the second stack to referencing the
first stack indicating that the first stack is used by the
second thread to execute the code,

executing the code from the second thread using the first
stack associated with the first thread, and

receiving a return of the request from the first thread
after executing the code, wherein the thread context
specifies that the first stack is used by the first thread
to receive the return of the request.

8. The non-transitory machine-readable storage medium of
claim 7, wherein the first thread waits for the return using the
first stack after the request is generated.

9. The non-transitory machine-readable storage medium of
claim 7, wherein the second thread is a single main thread of
the process, the second stack is associated with a stack state,
and the stack state does not change during execution of the
code.

US 9,135,054 B1

11

10. The non-transitory machine-readable storage medium
of claim 7, wherein the steps further include:

determining whether the second thread is in an active state

when the request is generated, wherein the task is per-
formed from the second thread when the second thread
is not in the active state.

11. The non-transitory machine-readable storage medium
of claim 7, wherein receiving the return of the request com-
prises:

determining whether the return of the request is available

from the first thread.

12. The non-transitory machine-readable storage medium
of claim 7, wherein the thread context includes a thread local
storage pointer, the first thread includes a first local storage,
the second thread includes a second local storage, and the
steps further include:

updating the thread local storage pointer to reference the

second local storage; and

updating, after execution of the code, the thread local stor-

age pointer to reference the first local storage.

13. An apparatus, comprising:

a processor, configured to:

generate a request from a first thread of a process for a

second thread of the process to perform a task including

executing a code, wherein:

the first thread is associated with a first stack,

the second thread is associated with a second stack sepa-
rate from the first stack,

the process includes a thread context that specifies
which particular stack is used by an executing thread,

the thread context includes a stack pointer that refer-
ences the particular stack being used by the executing
thread, and

the stack pointer references the first stack indicating that
the first stack is used by the first thread to generate the
request; and

in response to the request:

perform the task from the second thread using the sec-
ond stack, wherein the stack pointer is updated to
reference the second stack indicating that the second
stack is used by the second thread to perform the task,

10

15

20

25

30

35

40

12

migrate the first stack to the second thread for executing
the code associated with the task, wherein the first
stack is migrated to replace the second stack to
execute the code,

update the thread context to indicate that the first stack is
migrated to the second thread, wherein to update the
thread context the processor is further configured to
update the stack pointer from referencing the second
stack to referencing the first stack indicating that the
first stack is used by the second thread to execute the
code,

execute the code from the second thread using the first
stack associated with the first thread, and

receive a return of the request from the first thread after
executing the code, wherein the thread context speci-
fies that the first stack is used by the first thread to
receive the return of the request.

14. The apparatus of claim 13, wherein the first thread
waits for the return using the first stack after the request is
generated.

15. The apparatus of claim 13, wherein the second thread is
a single main thread of the process, the second stack is asso-
ciated with a stack state, and the stack state does not change
during execution of the code.

16. The apparatus of claim 13, wherein the processor is
further configured to:

determine whether the second thread is in an active state

when the request is generated, wherein the task is per-
formed from the second thread when the second thread
is not in the active state.

17. The apparatus of claim 13, wherein the processor is
further configured to:

determine whether the return of the request is available

from the first thread.

18. The apparatus of claim 13, wherein the thread context
includes a thread local storage pointer, the first thread
includes a first local storage, the second thread includes a
second local storage, and the processor is further configured
to:

update the thread local storage pointer to reference the

second local storage; and

update, after executing the code, the thread local storage

pointer to reference the first local storage.

#* #* #* #* #*

